
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP020845
TITLE: Incremental Maximum Flows for Fast Envelope Computation

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the International Conference on Automated
Planning and Scheduling [14th], Held in Whistler, British Columbia,
Canada, on June 3-7, 2004

To order the complete compilation report, use: ADA440777

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP020818 thru ADP020860

UNCLASSIFIED

Incremental Maximum Flows for Fast Envelope Computation

Nicola Muscettola

NASA Ames Research Center
Moffett Field, CA 94035
mus @email.arc.nasa.5ov

Abstract However, preliminary comparative studies of scheduling
Resource envelopes provide the tightest exact bounds on the algorithms using envelopes appear not to show a
resource consumption and production caused by all possible computational advantage with respect to using more
executions of a temporally flexible plan. We present a new traditional heuristic methods based on fixed-time resource
class of algorithms that computes an envelope in profiles (Pollicella et al., 2003). Since computing envelopes
O(Maxflow(n, m, U)) where n, m and U measure the size of is more computational expensive than building a fixed-time
the flexible plan. This is an O(n) improvement on the best profile, it is critical to ensure that the balance between
complexity bound for an envelope algorithm known so far computation cost and increased structural information
and makes envelopes more amenable to practical use in extracted form the envelope is advantageous. Making the
scheduling. The reduction in complexity depends on the fact
that when the algorithm computes the constant segment i of trade-off advantageous requires two complementary
the envelope it makes full reuse of the maximum flow used approaches. The first reduces the cost of computing an
to obtain segment i-l. envelope; the second devises new envelope analysis

methods to extract useful heuristics.
In this paper we address the problem of cost reduction.

Resource Envelopes Currently, the resource envelope algorithm known to have
the best asymptotic complexity (Muscettola, 2002)

The execution of plans greatly benefits from temporal computes all piecewise-constant segments of the envelope
flexibility. Fixed-time plans are brittle and may require through as many as 2n stages, where n is the number of
extensive replanning due to execution uncertainty, events (start or end of activities) in the flexible plan. Each
Moreover, when plans must deal with uncontrollable stage computes a maximum flow and therefore the overall
exogenous events (Morris et al., 2001) temporal flexibility complexity of the method is O(n Maxflow(n,m, U)) where m
cannot be avoided. However, effective algorithms to build is the number of temporal constraints between activities in
temporally flexible plans are rare, especially when the plan, U is the maximum level of resource production or
activities produce or consume variable amounts of resource consumption at some activity, and Maxflow(n, m, U) is the
capacity. A major obstacle is the difficulty of assessing the asymptotic cost of the maximum flow algorithm.
resource needs across all possible plan executions. This staged method, however, can be significantly

Methods are available to compute resource consumption improved since at each stage a full maximum flow for the
bounds (Laborie, 2001; Muscettola, 2002). In particular, entire flexible plan is recomputed from scratch. Cost
(Muscettola, 2002) proposes a polynomial algorithm to reduction could be obtained through an incremental flow
compute a resource envelope, the tightest of these bounds. method. Starting from the maximum flow at one stage, the
By being the tightest, resource envelopes can potentially maximum flow for the next stage is obtained by minimally
save an exponential amount of search (through early reducing flow when deleting nodes and edges, and by
backtracking and solution detection) when compared to minimally increasing flow when adding new nodes and
using looser bounds. Also, methods that compute resource edges (Kumar, 2003). However, without appropriately
envelopes identify maximally matched sets of resource ordering flow reductions and increases, the asymptotic
consumer/producers that balance each other for any plan complexity may not improve (at it appears to be the case in
execution. This and other structural information could be (Kumar, 2003)).
crucial in minimizing the search space and suggesting In this paper we introduce an incremental method that
effective scheduling heuristics, potentially enabling new provably computes an envelope in O(Maxflow(n, m, U)) for
classes of highly efficient schedulers, a large class of maximum flow algorithms. This reduction

of complexity is significant. Experimental analysis has
Copyright © 2004, American Association for Artificial Intelligence shown that the practical cost of maximum flow is usually
(www.aaai.org). All rights reserved. as low as O(n ") (Ahuja et al., 1993). This compares well

with O(n log n), the cost of building resource profiles for
fixed time schedules.

260 ICAPS 2004

This paper is organized as follows. We first give a as the new consumption. A similar condition applies to the
succinct introduction to the resource envelope problem and correct occurrence of a producer. The full information on
the staged envelope algorithm in (Muscettola, 2002). Next the necessary precedence relations is captured the anti-
we present the new incremental algorithm and identify all precedence graph Aprec, a graph that contains a path
sources of performance improvements. We then prove the between any two events e, and e2 if and only if le, e2j •50.
complexity result, discuss implementation improvements Figure 2 depicts an anti-precedence graph of the network in
when using preflow-push algorithms and conclude by Figure 1 with each event labeled with its time bound and
discussing future work. resource allocation. We use anti-precedence graphs rather

than the most customary precedence graphs (Laborie, 2001)
to simplify the construction of the auxiliary maximum flow

Staged Computation of Envelopes problem that, as we will see, is fundamental for the

In this section we outline the envelope problem and the computation of envelopes.
staged algorithm that solves it. For a complete discussion, We can now formally define a resource envelope. For
see (Muscettola, 2002). any subset of events A, the resource level increment of A is

segure I (scettowsa n 2t nA(A) = 0 if A = 0, and A(A) = X,,A r(e) if A • 0. If S is the
Figure 1 shows an activity network with resource set of all possible consistent time instantiations for all

allocations. The network has two time variables per eet n satm ihntetm oiotersuc

activity, a start event and an end event (e.g., e,, and e,, for events and t is a time within the time horizon, the resource
activitylevel at time t for a specific time instantiation s e S is t)
(e.g., 12, 51 for activity A,), and flexible separation links = A(E,(t)). Here Eft) is the set of events e which occur at

between events (e.g., [0, 4] from e3, to e,). Two additional or before t in s. The maximum resource envelope is L,,(t)

events T and Tý define a time horizon within which all maxsLlt) and the minimum resource envelope is Lt)

events occur. <[4, 10], 3> <[6, 13], 2>
Time origin, events and links constitute a Simple ,.4 2se

Temporal Network. To describe resource production and <[1,4], -4>

consumption each event also has an allocation value r(e) Cisei
(e.g., r(ej,) = -2), a numeric weight that represents the
amount of resource allocated when the event occurs. We ee

will assume that all allocations refer to a single, multi- e3,F <5, 171,-4>
capacity resource. The extension to multiple resources is
straightforward. If the allocation is negative an event e- is a <2 1
consumer, if it is positive e' is a producer. We assume that
the temporal constraints are consistent which means that Figure 2: Anti-precedence graph with time bounds and
for any pair of events the shortest path Ie,ej from e, to e2 is resource allocatious
well defined. Each event e can occur within its time bound,
between the earliest time et(e) = -IeTI and the latest time = min,,, L(t). Since L,, can be computed with obvious term
lt(e) = ITel. The triangular inequality le,ei -5je,e21 + le,e31 substitution on the method that computes L,_, we only
holds for any three events ep, e2 and e,. focus on L,.

To compute the resource envelope at time t we partition
<e2,, 3> [2, 3] <e3,, 2> all events into three sets depending on the position of their

<ejý, -4> [2, 5] <eý, •4> A2 time bound relative to t: 1) the closed events C, that must
[-1,4] occur before or at t, i.e., such that that lt(e) !• t; 2) the

Ai [0 4 6] 1pending events R, that can occur before, at or after t, i.e.,
'[-2 3 4, 4> such that et(e) -5 t < lt(e); and 3) the open events 0, that
,, must occur strictly after t, i.e., such that et(e) > t.

[1,4] [151 [0, 4] A4 <e4ý, -4> Any resource level increment L(t) will always include
• [0, the contribution of all events in C, and none of those in 0,

<e3s, -2> A3 <e3,, 3> 0 + but may include only some subset of events in R,, i.e., only
0 -0 those that are scheduled before t in s. It is possible to show

T" [30, 30] T. that this subset must be a predecessor set PccR such that if
eeP and e' follows e in Aprec, then e'eP. We call Pma/(Rt)

Figure 1: An activity network with resource allocations the (possibly empty) predecessor set with maximum non-

Informally, a flexible plan is resource consistent if the negative resource level increment.
duration and separation links induce appropriate necessary The fundamental result reported in (Muscettola, 2002) is
precedence relations between consumers and producers. that L,,Jt) can be determined from the following equation.
These relations should guarantee that, when a consumer
occurs, the total resource level due to consumers and Equation 1:L,(t)=A(C)+A(P,(R))
producers that cannot occur after it must be at least as high

ICAPS 2004 261

From Equation 1 and Theorem 2 (Muscettola, 2002)
- -- derives a staged envelope algorithm as follows. Consider a

, \ o time t, corresponding either to the earliest or the latest time
/ e2. of some event. In a network with n events there are at most

e,, . 2n such times. Since the envelope level can only change at
r0 9. a4. one of these times, the algorithm computes a different level

....... ..." for each of them. At a particular t, the algorithm determines
e,. the corresponding closed event set C, and pending event set

34 R,, bulds F (1,), computes one of its maximum flow using
some appropriate maximum flow algorithm, determines
P_(R) according 'to Theorem 2, and computes L.(t,)

Figure 3: A resource increment flow network according to Equation 1. It is easy to see that the worst-case

Assuming that time bound information is available for time complexity of this algorithm is O(n Maxflow(n, m, U))
all events, the computation cost of A(C,) is 0(n). The cost where Maxflow(n, m, U) is the worst time complexity of
of computing P,(R,) determines the asymptotic cost of the maximum flow algorithm used.
L ma(t). We can compute PJ,(R,) by solving a maximum
flow problem on an auxiliary flow network F (R,), the Incremental Computation of Envelopes
resource increment flow network for R,.

The formal definition of a resource increment flow In the envelope algorithm previously described, maximum
network can be found in (Muscettola, 2002). As an flows are recomputed from scratch for each F(R1). Assume
example, Figure 2 gives F (R4) for the activity network in that the times ti are sorted in order of increasing value. To
Figure 1. The network has a node for each event in R, an reduce the cost of computing the maximum flow for F (R,),
infinite capacity flow edge between two events for each we will follow the approach of reusing as much as possible
edge in Aprec (see Figure 2), an edge from the source or to of the maximum flow computed for F (R,.,). Our theory is
a producer with capacity equal to the producer's allocation, independent from specific maximum flow algorithms.
and an edge from a consumer to the sink r with capacity Instead we build our argument on general properties of the
equal to the opposite of the consumer's allocation, resource increment flow networks.

A complete discussion of maximum flow algorithms can As in (Muscettola, 2002) the fast envelope algorithm
be found in (Cormen, Leiserson and Rivest, 1990). Here we operates by the modular application of a maximum flow
only highlight a few concepts that we will use in the algorithm to a well defined sequence of resource increment
following. A flow is a function f(e, e2) of pair of events in flow network. The generality of the following theory opens
F(R,) that is skew-symmetric, i.e.,fje2, e1) = -fle,, e2), for the possibility of studying which flow algorithm could be
each edge e,---e2 has a value no greater than the edge's most appropriate for different kinds of plan topologies.
capacity c(e, e2) (assuming capacity zero if the edge is not
in F(R,)), and is balanced, i.e., the sum of all flows entering Sources of Incremental Envelope Speedup
an event must be zero. A pre-flow is a function defined
similarly but that relaxes the balance constraint by allowing 4
the sum of pre-flows entering a node to be positive. The 4,"' '

total network flow is defined as X_,R, fJq, e) = E,,R,ffe, r'). / 3 x \ dj"- ',. 3
The maximum flow of a network is a flow function f_ /4 ,e +2s,
such that the total network flow is maximum. A - e,, 4 *0 a

A fundamental concept in the theory of flows is the 2 4'
residual network for a particular flow, a graph with an \ e

edge for each pair of nodes in F(R,) with positive residual e. .
capacity, i.e., the difference c(e, e2) - fle , e2) between +0e.. 3
edge capacity and flow. Each residual network edge has
capacity equal to the residual capacity. An augmenting path Figure 4: Incremental modification of a resource flow network
is a path connecting or to r in the residual network. The
existence of an augmenting path indicates that additional At time t, the set of pending events can undergo two
flow can be pushed from a to r. Alternatively, the lack of modifications. First, the events X, = R,., - R, move from
an augmenting path indicates that a flow is maximum. R,, to C,. These are events e such that t, = lt(e). Second, the

We can compute PJR,) according to the next theorem. events 6Ri = R1 - R,., move from O0., to RP These are the
events e such that tj = et(e). For example, consider the

Theorem 2: [Theorem 1 in (Muscettola 2002)] P,(R) activity network in Figure 1 and the process through which
is the (possibly empty) set of events that are reachable from R,., for t,.,= 3 is transformed into Ri for t. = 4. This is
the source a in the residual network of somef_ of F (R). described in Figure 4 where at time 4 the grayed part of the

network is deleted and the emphasized part of the network
is added. In particular, we have 8C, = (e,,) and Ri = (eJ.

262 ICAPS 2004

For completeness, we note that F(8C,) consists of node e, recursive equation that computes L,,,Jti) as a function of
and edge e,--9r while F (&R,) consists of node e2, and edge LmJti.,) and the weights of event sets deduced from the
---•e2 . All other added and deleted edges are connectives application of flow transformation operators.

from F(R,.,- C,) to F(&C) (edges e --e, and e,,--)e,) and
from F(M5R) and F(R,_,- X,) (edge e2,---e,,). Flow Modification Networks

The sets 8es and 9R, satisfy the following fundamental The philosophy of each flow transformation operator is
properties. similar to that used by the flow augmentation method in

Lemma 3: AC, is a predecessor set contained in R, r M, is maximum flow theory. However, we use this method more

the complement of predecessor set R51 in R, " generally not only to augment flow but also to shift flow

Proof: We only give the proof for 8C, since the one for & around the network and to reduce flow. The general idea is

is analogous. We need to show that no predecessor of an the following. Given a flow network F and one of its
event in 8C, can belong to its complement in R,.,. In other maximum flows f, an operator first defines an auxiliarywords, given e l, e t(C) and e omplementi using the flow transformation network F, then finds one of its

wodgve "e~C)ade e uigte maximum flows f. and finally produces a flow f~o = f+ fr.
definition of anti-precedence graph and predecessor set, it Each fcons f sed edges i rl netw

must be le, e21 > 0. From the definition of 8CW we have lt(e,) Each Fr consists of selected edges in the residual network

= t, and lt(e2) - t,+ 1. From the triangular inequality applied of F for f. Since the properties of flows are nserved in the

to the latest times of e, and e2, It(e2) _ lt(e,) + le, e21, we also a flow for network F.
deduce le, ej1->It(e2) -Ilt(e) ?t, +1 - t, I > 0.0 loafo o ewr

Consider now the resource increment flow network

Lemma 3 determines what flow edges are eliminated F (R,.,) at stage i-1 and assume that the set of new closed

when 8C, is deleted and what are added when M, is added. events ,Cj is not empty. At stage i all events in 8C& and all
In particular, we can only delete edges that enter events in of its incoming and outgoing edges will be deleted. ThisnC, or go from tCi to r. Similarly, we can only add edges also means that any flow that at the end of stage i-1 enters
that exit events in 8R, or go from or to b-l , Unlike previous Xi will necessarily have to be zeroed, i.e., pushed back

that exit events)inThe vorugoofromis toowRisUnlikeuprevious
proposals for incremental envelope calculation (Kumar, into F (R_). The value of this flow is the sum of the

2003), our method relies on events and edges exiting and residual capacities of all edges e,--e 2 where e, e 8TC and

entering the current flow network in a well defined order, e2eR. - 8C,. When pushed back, this flow can follow two

This is the primary key to reducing complexity. routes. The first reaches "r through some non-saturated

Directly related to Lemma 3 is the possibility of exiting edges of F (R,.,-8C1). If after having followed the

computing the maximum flow of F (Rd by incrementally first route some flow is still flowing on some e,--e 2 but the

modifying the flow of F(Ri-.), reusing both flow values and flow cannot reach r any more, a second route allows

intermediate data structures across successive invocations reversing the remaining flow all the way to a. We call this

of a maximum flow algorithm. We will prove that our flow push-back operation aflow contraction. The first flow

modification operators guarantee the maximality of each route corresponds to a flow shift and the second one to a

intermediate flow. Maintaining intermediate flow flow reduction. For example, consider the network in Figure

maximality and reusing data structures are keys to reduce 4. Assume that at t=3 it is fmje1 , r) = 4, f_(e,, r) = 1 and

complexity for different kinds of maximum flow f(e 3, r) = 2. At t=4 the elimination of e,, requires pushing
algorithms. back 4 units of flow. Three of these units can still reach r

A final factor is minimizing the size of each intermediate by being shifted to ee --•r. Only one unit of flow needs to be

flow network. We will show that as soon as the weight of pushed back to cr. If we pushed four units of flow back to a

an intermediate Pmx is used in the envelope calculation, without shifting (as in (Kumar, 2003)), later we would need

F (Pm,) and all of its connecting edges can be safely to push again three units of flow from orto nrto ensure flow

eliminated from further consideration. This reduces flow maximality. This repetition of work affects worst-case

network size and further contributes to cost reduction. asymptotic complexity.

The argument to construct the fast envelope algorithm Assume now that at stage i there is also a non-empty set

will proceed as follows. On the basis of Lemma 3, we first 8R, of new pending events. Augmenting F (R,.,-8C) with

define flow transformation operators that apply to network the part of the resource increment flow network pertaining
time ~,. to bR• yields F (R1). Assume now that F (R,.,-&C•) is

additions/deletions occurring between time ti.! and time ti. tr b y tel ow R esu m fow t rat ion. E e

The operators define the sequence of maximum-flow traversed by the flow resulting from flow contraction. Even

problems that need to be solved. Then we identify a flow if this flow is maximum for F(Ri., - 8Q, in general it will

separation property that, once applied to the sequence of not be maximum for F (R) since additional flow could be

maximum flow problems, further reduces the size of each pushed through edges or-->e with eEgR,. We call this flow

step's maximum flow problem. Finally, we determine a push-forward operation a flow expansion. If at every stage
of flow contraction and flow expansion we guarantee flow
maximality, we will obtain a maximum flow for F (R,) by

SFor ease of exposition we assume discrete time although moving a minimal amount of flow.
the theory applies also to continuous time with appropriate Flow Contraction
modifications.

ICAPS 2004 263

Let us call f,, the maximum flow for F (R,.,). In our
discussion we ignore the structure of the flow sub-network Using Shift, and Reduce,, we define the FlowContraction
for 6C, by using an auxiliary flow network F,, that redirects operator needed by the incremental envelope algorithm.
all flow entering 6C, into the sink r. Formally, to obtain F.,
we first delete from F(R,) all events in 8C,, together with all FlowContraction(F (R,,) , f-,,, 6C, Aprec):
their incoming and outgoing flow edges. We then add an 1) Compute a maximum flow f.,h•,ifor Shift;
auxiliary edge e,--->r for each set of component edges e,--&e2 2) Compute a maximum flow f,.,,, for Reduce;
in F(R,.,) such that ee R,.,-SC, and e2,e•C,. The capacity of 3) Returnfcof,,I=fIl+f.,,hf.•+f,,.,,di
the auxiliary edge e,--4r is the sum of all f,_,,.,(e,, e2). We
call f..,., a function over the edges of F., where f_,,.,(e,,e 2) We now prove that the operator keeps the flow
is equal tof,,.,(e,,e,) if e,-->-. is not an auxiliary edge, and maximum.
f.,.,.(e,,e2) is equal to the edge's capacity if it is an
auxiliary edge. It is easy to see that f_,,, is a maximum Lemma 4: Theflowf' = +fm, , , is maximum for ,.
flow for E.,. We call Res,-, the residual network of F,., for Proof: f' is a flow of F.,. It is also maximum since by
f-,j-,,.• construction of Shift, it is f•.,,,(a, e) = 0. Therefore f'(a

For example, consider the transformation at time t,=4 of e) = fam•,. e) and thereforef' is also maximum for F.1.0
the network in Figure 4 and that at time t,.,=3 it is f_,,.,(e,,
",') = 4, f.,,(e,,, ") = 1, f•.,_,(e,,, r') = 2, f../,eh,, e,,) = 1 Lemma 5:fo,. is aflowfor F(R,.1-8CQ.
and f,(,./e,,, e,) = 3. Then, F., will not contain e,, and all Proof: f,, is a flow for E.,. For it to be a flow for
of its incoming and outgoing edged and will contain two F (R,.,-SC,) it must be f,,,,fe, T)=O if e--nz is an auxiliary
additional flow edges of capacity c(e,,, r) = 3 and c(e3 ,, r) edge. If it were fo,,.Je, r) > 0 for an auxiliary edge, by
= 1. The maximum flow function f,., will have the same using the flow conservation constraint we could show that
value as fm, for all edges that already existed in F(R,-,) there must be a path from ar to r, passing through e--z,
and for the auxiliary edges it is f r,,(e, r) = c(e,,, r) = 3 with all edges having positive flow. Therefore, there must
and f•,,(e3 ,, r) = c(e.,, r) = 1. Note that we have only two be a flow-reducing path from t to o" in the corresponding
edges in the residual network that are associated to residual network. Such path is an augmenting path in the
auxiliary edges, r -- e,, with residual capacity 3 and 'r - e,, residual network of Reduce, for flow f which
with residual capacity 1, since both auxiliary edges are flow contradicts the maximality off_,,•,,i.D
saturated.

We define aflow shift network Shift, as follows. Theorem 6 :f,,,f, is a maximum flow for F(R,., - SC).
Proof: This is clearly true if is a null flow sincef' is

Flow shift network: Shift, is a flow network with the same maximum. If f,,,,; is not null, assume that f~o,,, is not
nodes as Res,,. Shift, has a flow edge e1 -e 2 equal to a maximum. This yields an augmenting path 17 from a to r

corresponding one in Res ., if e, ,4z and e,#.a. Finally, in F (R,., - SC,) for fc,,,. Since f,., is maximum, H could
for each edge r--e in Res,., such that e--.r is an auxiliary only have appeared after the computation of f,,hf,,. Sincef'
flow edge in .,,, Shift, has a corresponding edge o'-- of is maximum for f,-, there must be at least one edge e1 --)e2

the same capacity. belonging to H that does not belong to the residual network
of F_- for f' otherwise f,,.,�,, would not be maximum.

Shifti embodies the first route through which flow is Among these edges consider the one with either e, = r or
pushed back. A maximum flow fmnamhif•i for Shifti represents such that the suffix of H going from e, to r has positive
the maximum possible flow push-back. After this step, we residual capacity in Shift, for f.,j,.. A positive residual for
produce a new flow f' = f,,,,., + f for Fi.. Now we e, -m2 implies that flow reduction pushed flow in the
need to formally define another auxiliary flow network, opposite direction, i.e., f,•,,,,(e,, e,) > 0. By back-tracing
Reducei, to characterize the second flow push-back route, f,,e,,(e,, e,) we find a positive flow path for f.,,,, in
the one all the way back to a. Let us call Res(Shifti) the Reduce, from a to e, . This can only happen if the capacity
residual network of F,- for]f= 'f,,, + f,,,.,. We define a of the path in Reduce, is positive, which is equivalent to a
flow reduction network Reducei as follows, prefix path with positive residual capacity in Shift, for

f Tying the prefix and postfix at e, yields an
Flow reduction network: Reduce, is a flow network with augmenting path in Shift, forf_,,,,•, impossible sincef,,,,h,.,
the same nodes as Res(Shift) and edges el-e 2 identical to is maximum.0
Res(Shift) if e2 #r and either e, {o;, r I or e,= r and the Flow Expansion
edge r--e corresponds to an auxiliary edge e -4r in F To complete stage i we must now incorporate the event set

8R, to yield R, and allow the computation of PFa,, = PJ(R,).
Note that if el is a consumer, an edge el -4'r will already Again, we define an incremental operation on an

exist before the introduction of a corresponding auxiliary incremental residual flow network, the flow expansion
edge. We tolerate the duplication of these edges since _i., is network. The network is built on the residual network of
only intended as a formal device for the construction of F (Ri,, - 6C,) for flow f We call this residual network
Shifti. Res(Contr,).

264 ICAPS 2004

Since after flow shifting no flow has been changed for
Flow expansion network: Expandi is a flow network with edges that touch _P,•,, P,,., maintains the flow insulation
nodes corresponding to those of Rr Expand, contains all and saturation properties it had before flow shifting.
flow edges el --- 2 in Res(Contr), all flow edges in F (SR.) Considering now flow reduction, f_,,,d,, this can be
and an infinite capacity edge e1 --me2 for each anti- computed by simply back-tracing flow in F.,. Because of
precedence edge between e, e6R, and e, aRi-I -8Cr the flow insulation of P.,,,, this back-tracing is either

performed exclusively over edges connecting events in
Note that by construction Expand. is the residual network P = Pc.(.) - 8C, or is confined within edges

in F(R) for fo,,,,. We now define the final operator needed connecting events in P,,.,.. Since the entire flow that exits
by the incremental envelope algorithm, Flow-Expansion. P_,., will be back-traced, the entire P = P•JR,.,) -

must belong to P , the maximum predecessor set
FlowExpansion(F (R,,-Cd), f,, bR Aprec): obtained after FlowContraction,. Therefore the contribution

1)Compute a maximum flowf_.•,,1for Expand1; of P__.,., to P .. ,..,, can be known in advance without
2)Return f., 1=f,, +f,,p, having to modify any flow of F (P,.J during

FlowContraction1 . Hence, P_(R,_,) can be taken out of
Theorem 7:f 1., is maximum for F(R). consideration for future flow calculation as soon as it is
Proof:. f_,, is clearly a flow for F(R). Moreover, f,,,,, is computed.
maximum for Expandi and therefore there is no augmenting Finally, we can use a similar argument to the one used
path in the corresponding residual network. The maximality for flow shifting to show that FlowExpansion, can bepC

of fma,, follows from the identity between the residual performed entirely over F (P . therefore allowing us
network of Expand, forf and the residual network of to ignore P r, at any future stage.
F(Rd) for f,,ax,,.Oq

Incremental Computation of Lmax

Flow Separation for Pm, We are now ready to derive a recursive equations for the
We can achieve further performance improvements by incremental calculation of L,,(t) by transforming
minimizing the number of nodes and flow edges that need Equation 1 through the application of flow reduction and
to be considered at each stage. During stage i, two P. are expansion.
computed: P r,,, after FlowContraction, and P , after
Flow.-Expansioni. We know that each P. is a predecessor Theorem 8: Lmar(t) satisfies this recursive equation:
set (i.e., it contains all of its successors in the anti- ift = t
precedence graph), it is flow isolated (i.e., for each pair of Lý(t) = A(C1) + A(P.(R1))
events eeP and e2 e PC-, f,_(e,, e2) = 0 and f,,(e 2 , e,) = ift = ti and i >1
0) and has all exit edges saturated (i.e., f_(e, -r) = c(e, r) L.(t) = L.(t1 .1) +
for all eeP) (Muscettola, 2002). This allows us to prove A(C, n Pc.(R1 .1)) + ii
that F (P,,_) can be ignored during the computation of A(P•Pý (R•.) -Q) + i
FlowContraction, and F(P..... ,,i) can be ignored during the A(P.(3R, P.(PC,(R1 .,- 9C))); iv
computation of FlowExpansion,. ift4j, then

Let us consider each maximum flow operation executed Lmr(t) = Lm.(t-1).
at stage i. The first is flow shifting. Let us consider the Proof: Ltt) only changes when R, changes, i.e., at a time
properties of the set P ,, of Z., that contains the events in ti. Consider in turn the application of FlowContractioni and
P_(R,) --C •. is a predecessor set since all events in FlowExpansioni. Because of flow separation after
SC, are at the bottom of the anti-precedence graph for FlowContraction1,, we have P_.,,_,. = (P,,JR.,)- 8C) u
F(R,.,). Moreover, due to added auxiliary edges in F,, the P(Pc(R.,) -SC). Analogous!y, after Flow- Expansion,
residual of the producers of - is the same as that in we have P, = P ,..,... u' PJ(P _,,,, u, &R1).
P_,. and therefore equal to 4(P,,(R,,)). P,=,,. is still flow a) FlowContraction,: the level after flow contraction,
insulated and has all exit edges saturated. Assume that at Lma,, conti) is the weight of the closed events after
some point during the flow shifting operation some contraction and of Pma,,onrr,i. Since Ci andPmxont , are
additional flow reached an event e'eP•. In order for at disjoint, Lmaxcontrti) = A(Ci._ . tuCi u- Pmaxcontri) =
least part of such flow to reach r there must be a postfix A(Ci.1) + A(Xi u (P,(R,.,) - 8C,))) uA(P,J(PCJR.,)
augmenting path that reaches 'r from e'. But this is - 8C,)). Since for any two sets A and B it is A u (B -
impossible since, being P a predecessor set, all postfix A) = B u(A - B), with B and (A-B) being disjoint sets,
paths must remain inside _P,,-, and all exit edges from we have XCi u (P_,(R,_,) - 8C,) = P.(Ri.)

to ir are saturated. Therefore, any maximum flow L4SC,-Pm_(R,•.)). Hence, A(Ci~l) + A(Ci (Pf.JR,R) -
algorithm that searches for augmenting paths can avoid XC)) = L(t,t,) + A(SC1-P_(R,_)). Since 8C, cR, =
doing so in P Moreover, in order for any excess flow P_(R,.,)uPc,(R,R1), it is easy to see that 4C, -PJR,)
pumped into events of .,-, to achieve r, that flow will have = nC, n PC (R1 .). This yields Lm., .cont.(ti) = LmJtit.) +
to be pushed back fromP ,,, to _P,,,. Therefore we can A(SC, n'- P ý(R,_,)) + A(P_(PC_(Ri_,) - 4QC)), i.e.,
ignore P_.. during flow shifting. lines i, ii and iii in the theorem's statement.

ICAPS 2004 265

b) Flow_Expansion,: the only new increment comes
from set Pu 5j(, R) = P_(pc (R,., - 6Cj) L,/
&R,) which yields line iv in the theorem's statement.fl Complexity Analysis

The following complexity analysis applies to a large

IncrementalResourceEnvelope (N, Aprec(N)) number of maximum flow algorithms used for
{ 1: E (Group events in the input set N into entries E& with three Flow_Contraction and FlowExpansion. Each algorithm has

members: a time t and two lists earliest and latest Event a complexity key, i.e., a measurable entity whose static
eEN is included in E&.eadiest if et(e) = t and in Et.Iatest if properties or dynamic behavior during the algorithm's
lt(e) = t, Sort the Et in increasing order of L) computation determines the algorithm's time complexity.

2:tLmu:=(<-xv O.>) P Maximum resource envelope. "/ Table 1 (adapted from (Ahuja, Magnanti and Orlin, 1992))
3: ta• := O; P Current time */ reports the time complexity and complexity key of several
4: IOW:= 0; /* Envelope level at previous iteration. '/ maximum flow algorithms.
5: Ln, := 0; /P Envelope level at current iteration. *1
6: Pmax := 0, / Maximum increment predecessors.*/ Algorithm Time Complexity
7: Fcur:= 0; P*Resource increment flow graph with associated Complexity Key

maximum flow '/ Labeling 0(nmU) Total
8: Ecur := 0, / Entry from E at tar. " pushable flow
9: while (E is not empty) Capacity scaling 0(nm Total

10: (Ecur := pop(E); logU) pushable flow
11: tur := Ecur.t; Successive shortest paths 0(n2m) Shortest
12: Lnew := Lod + weight (intersection (Events(F,), Ecur.latest)); distance to T
13: Fcur := Flow_Contraction (Fcur, Ecur.latest, Aprec(N)); Generic 0(n2m) Distance
14: <Pmax Fcur> := Extract_P_Max (Fcur); Preflow-push label
15: Lne := Lnew + weight (Pmax); FIFO 0(n,) Distance
16: Fcur := FlowExpansion (Fcur, Ecur.eadiest, Aprec(N)); reflow-push label
17: <Pmax, Fcur> := Extract!Pmax (F_);
18: Lnew := Lne + weight (Pmax); Table 1: Complexity of maximum flow algorithms
19: Lmax := append (Lmx, <tcur, Lew>); The Labeling and Capacity Scaling algorithms are based
20: Lold := tnew; on the original Ford-Fulkerson method. Their complexity

rr depends on the strict monotonicity of the flow pushed
return Linax; during each algorithm's iteration and on the fact that the

} total pushable flow is bound by nU where U is the

Figure 5: Incremental envelope algorithm maximum capacity of an edge o'--ge or e---nr. The
successive shortest paths class of algorithms is based on the

Figure 5 shows the pseudocode of the algorithm. The original Edmonds-Karp algorithm. The complexity depends
functions FlowContraction and Flow-Expansion receive as on the fact that flow is pushed through augmenting paths of
arguments the current flow network F., which includes the monotonically increasing length. The complexity key for
current maximum flow, the incremental set of events that this class of algorithms is the shortest distance to r for each
need to be added/deleted Ecur.{eailiestlatest), and the anti-
precedence graph Aprec(N) for the set of all events N in the event e. For these algorithms it is crucial to demonstrate

plan. Aprec carries the topological information needed to that the distance function d(e) increases by at least one unit

expand the flow network, after each iteration.
Given the current flow network and its maximum flow Finally, preflow-push algorithms such as generic

both stored in Fcur, Extract P max returns both its preflow-push and FIFO preflow-push (Goldberg and
maximum increment predecessor set Pmax and the restricted Tarjan, 1988) maintain a distance labeling d(e). These
network and flow resulting from the elimination of the Pmx. algorithms use purely local operations that push excess
Comparing with the formula for Ljt,() described by flow available at node e, through active edges e,--oe2 such
Theorem 8, line 12 in the algorithm computes i+ii, line 15 that d(e,) = d(e,) + 1. When excess flow exists at some
adds iii and line 18 adds iv. Note that the pseudocode node and no edge is active, the node's distance labeling is
represents a methodology, i.e., a class of algorithms, increased by the minimum amount that activates some
Specific algorithms can be implemented selecting different edge. This allows more flow to be pushed. The complexity
maximum flow algorithms in FlowContraction and of preflow-push depends on creating a valid labeling at
Flow-Expansion. As we shall see the worst-case time each iteration and on the fact that for each node the
complexity of a specific instantiation of the methodology is distance labeling is monotonically increasing up to 2n-1.
the same as that the maximum flow algorithm used. To derive the complexity of our incremental envelope

construction methodology, we analyze how each of the

266 ICAPS 2004

complexity keys described before are modified across each of edges can reduce the distance function of some node e
contraction and expansion stage. Our goal is to show that between a shifting and an expansion phase. In the worst
when moving across stages the invariant properties of the case, this may reduce some distance back to a one unit
complexity keys vary consistently to what is required by distance for each application of maximum flow and
the maximum flow algorithms within each phase. therefore does not improve on the staged algorithm in

Consider first the cumulative cost of computing all flows (Muscettola, 2002).
over 2n stages respectively forf,,•.,hji, f,,d, and fm,•.i. Finally, consider reusing distance labeling across
First note that at each stage fu,,,uredi can be computed by preflow-pushes for shifting and expansion. 4f,31 _, ex. ,
flow back-tracing through a backwards depth first search and da,,,. are the distance labelings at the beginning and end
on the resource increment flow network. Since this can cost of shifting and expansion. Assume also that the distance
up to 0(m), the total cost of computing flow reduction is label of a node that has not yet entered Expand, or Shift, is
O(nm) and is therefore smaller than the cost of applying a zero.
regular maximum flow algorithm. Therefore we focus on
the cost for the cumulatives...i andfmaxpji, respectively Lemma 11: 4-, can be made equal to d ,1 for all nodes

Fshifj = 21ff..,shjtj and Fp = 2 ;f,,xpji. in Shift, Also, do ', can be made equal to t_, for all
nodes in Expand,.

Lemma 9: Neither F nor F, are greater than n U. Proof.- The distance label of a node remains valid when

Proof: We develop the argument for Fh since the one for edges are deleted or new added edges always enter it from
new nodes. Also, at node e the value of a distance function

Fe~p is similar. Consider the total capacity of the edges *---e d(e) must be an upper bound of that of the corresponding
entering the auxiliary flow network Shift,. Its upper bound labeling d(e). From Lemma 10 we know that the distance
is the total capacity of edges e&--;ýr with e~). After function can only increase from Expand,., to Shift. and from
iteration i all nodes in X7, are eliminated from further Shift, to Expand,. Therefore d. and are valid
consideration, hence flow can go through each cr--e in choices respectiv ely for d an aeval.d i
Shift, only during iteration i. Therefore, the total flow is c r t f a
upper bounded by .Z 1C ,i U = n U.f We can now prove the main complexity result.

Note that the argument above does not hold for F,,x if we Theorem 12: IncrementalResourceEnvelope has time
do not use flow shifting but the flow is simply reduced and corem 12: Incremntmesurcenvone of the
then expanded again (Kumar, 2003). In this case the same complexity O(Maxflow(n, m, U)) when one of the
flow could be pushed up to n times and the cost of F algorithms in Table 1 is used for flow contraction andnflow
would be O(n U). This would not improve on the staged expansion,eneoealgorithm in (Muscettola, 2002). Proof. Assume we applied one of the maximum flow
envelope algor us in theseond 2002). algorithms in Table 1 to the resource increment flow

Now, let us focus on the second complexity key, the network for the entire flexible plan (e.g., to compute the
shortest distance function d(e) from e to r We will focus maximum envelope level over the entire time horizon
on how d(e) changes at the beginning and the end of (Muscettola, 2002)). This full maximum flow calculation is
successive fmax shjift and fma,expji computations. Let us call O(Maxflow(n, m, U)). We use Lemmas 9, 10 and I11 to
d°•hife) and dshifti(e) the distances at the beginning and at
the end of flow shifting for iteration i. We define similarly prove that during envelope construction the cumulative cost

doepije) and dfxp,,e), of using the same algorithm for flow shifting and flow
' ,expansion is also O(Maxflow(n, m, U)).

Lemma 10: dr j•(e) <5 d°,,,,(e) and dý, m, (e) < d',fe). 1. Labeling and Capacity scaling: Lemma 9 shows that the
L 1 ,. , - . worst case bound for the total flow moved during

Proof: Between the end of flow expansion at iteration i-1 shifting and expansion is at worst twice the full
and the start of flow shifting at iteration i, the auxiliary maximum flow. Also, during shifting and expansion
flow network changes through the elimination of F (8. the cost of finding an augmenting path is at most m,
The elimination of edges could eliminate existing paths and the same of finding an augmenting path when
therefore d(e) in the remaining residual capacity network computing the full maximum flow. Hence shifting and
can only increase. Since Shift, only adds edges or---)e, the expansion cost at most O(Maxflow(n, m, U)).
distances to r in Shift, cannot decrease and therefore 2. Successive shortest paths: the cost of performing a single
d,• ,j,(e) < d',hjf(e). For Expand, node distances to r could flow augmentation during full maximum flow
further increase because flow reduction can only eliminate calculation is an upper bound of the cost of a flow
residual network edges present in Shift, for f Also, augmentation during shifting and expansion. The
from Lemma 3 the addition of F (8R) cannot reduce algorithm's complexity also depends on the monotonic
distances since it cannot add any edge from an event in increase of the distance function up to n after each
Shift, to one in 19?,. Therefore, a ,hi, ,e) < da ex, fe).0 elementary operation. Note that until the deletion of a

8C, or a Pem, a node's distance is bound by n, the same
Note that the argument in Lemma 10 does not hold if as during the computation of the full maximum flow.

events are added in arbitrary order. In this case the addition Monotonic increase is guaranteed by the algorithm

ICAPS 2004 267

within each shifting and expansion phase and by These optimizations do not affect asymptotic complexity
Lemma 10 across phases. Hence, the cost is but may have a significant effect in practice.
O(Maxflow(n, m, U)).

3, Preflow-push methods: the complexity is found through
amortized analysis (Goldberg and Tarjan, 1988), Conclusions
relying on an appropriate potential function 0 and on
the determination of its possible variations after the We presented a new class of algorithms that efficiently
applying a local operation (e.g., a saturating or a non- compute resource envelopes for flexible plans. The
saturating preflow push). One key observation is the methodology is O(Maxflow(n, m, U)) where n and m
monotonic increase of each node's distance label for measure thsie of the activity plan and U measures theeahlocal operation. Both for the incremental and for maximum resource consumption or production of an event.
each ll owrtis incre mental and An empirical study over all algorithms of the class canthe full flow this increase is bound by 2n-1 and shed light on the actual practical advantage of the
Lemma 11 guarantees monotonic distance label shed tl methe actu s the stage of
increase across phases. Note that, unlike for the incremental methodology versus the staged approach of
computation of the full maximum flow, for shifting (Muscettola, 2002) or the incremental method in (Kumar,
and expansion 0 increases also at the beginning of 2003). While we expect that for large problem sizes theeach shifting phase, when nodes are activated by the 0(n) cost reduction will be evident, practical improvements
creation of initial flow excesses. However, a detailed on smaller problems may require careful design of efficientamortized analysis (omitted for space limitations) and minimal data structures. Also, performance differencesshows that this increase does not affect the order of are likely to occur among implementations that usecomplexity of the shifting and expansion phases that different maximum flow algorithms.
romplemains oflohestng ad Un pBy shedding more light on the fine-grain structure ofremains O(Maxflow(n, m, U)). flexible plans, incremental envelope construction is alsoT he w orst case com plexity of the other phases of l k l o i p o e t e " e ei " p r f t e c s/ e e i

IncrementalResource-Envelope besides shifting and likely to improve the "benefit" part of the cost/benefit
expansion are dominated by O(Maxflow(n, m, U). Flow tradeoff in the use of envelopes for flexible scheduling.
reduction is cumulatively 0(nm). The total cost of
Extract_P_max and of incrementally constructing and Acknowledgements
deleting the flow network is 2 0(m). Finally the sorting of
events during initialization is 0(n log n).0 Jeremy Frank, David Rijsman and Greg Dorais provided

helpful comments on previous versions of this paper. This
work was sponsored by the Automated Reasoning element

Optimized Preflow-Push Implementation of the NASA Intelligent Systems program.

For preflow-push implementations of the method, the
previous complexity analysis indicates that we need to References
reuse the distance labeling function from the end of a
maximum flow computation to the start of the next. R.K. Ahuja, T.L. Magnati, J.N. Orlin, 1993. Network Flows,

A further optimization is possible. Consider the Prentice Hall, NJ.
maximum flow calculation on Shift,. During initialization, R.K. Ahuja, M. Kodialam, A.K. Mishra, J.B. Orlin, 1997.
an excess flow is loaded on each event e for each edge Computational Investigations of Maximum Flow Algorithms,
a in Shift,. Wefl now il ade only aach ent eofor echi exess European Journal of OR, Vol 97(3).
f--oe in Shrift. We know that only a fraction of this excess T.H. Cormen, C.E. Leiserson, R.L. Rivest, 1990. Introduction to
flow may reach f. The remainder will be pushed back out Algorithms. Cambridge, MA.
of Shift• during flow shifting and then pushed again through A.V. Goldberg, R.E. Tarjan, 1988. A New Approach to the
the flow network during flow reduction. In other words, Maximum-Flow Problem. JACM, Vol. 35(4).
this flow travels twice through the network before being T.K.S. Kumar, 2003. Incremental Computation of Resource-
eliminated. We can remove this duplication as follows. Envelopes in Producer-Consumer Models, Procs. of CP2003,
Assume that, instead of deleting the edges o'-->e of F., Kinsale, Ireland.
when constructing Shift,, we delete the edges o'--e of Shift, P. Laborie, 2001. Algorithms for Propagating Resource
after having performed the appropriate initial excess Constraints in Al Planning and Scheduling: Existing
loading needed to perform flow shifting. In this case the Approaches and New Results, Procs. ECP 2001, Spain.
flow that cannot be shifted will be pushed back to the P. Morris, N. Muscettola, T. Vidal, 2001. Dynamic Control of
source in ,1 , i.e., the source of F (R,), making the Plans with Temporal Uncertainty, in Procs. of lJCAI 2001,s-ourc in Seattle, WA.
additional O(nm) cost of flow reduction unnecessary. N. Muscettola, 2002. Computing the Envelope for Stepwise-
Another possible optimization consists of combining Constant Resource Allocations, Procs. of CP2002, Ithaca,
preflow-push through Shift, and Expand, by connecting 8R, NY.
before running the shift/reduce preflow-push. In this case N. Pollicella, S.F. Smith, A. Cesta, A. Oddi, 2003. Steps toward
the initializations of contraction and expansion are Computing Flexible Schedules, Procs. of Online-2003
combined and a single preflow-push is run during phase i. Workshop at CP 2003, Kinsale, Ireland,

http://www.cs.ucc.ie/-kbl I/CP2003Online/onlineProceedings.pdf

268 ICAPS 2004

